Higher-order homophily on simplicial complexes

Author:

Sarker Arnab1ORCID,Northrup Natalie2,Jadbabaie Ali12ORCID

Affiliation:

1. Institute for Data, Systems, and Society, Massachusetts Institute of Technology, Cambridge, MA 02139

2. Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139

Abstract

Higher-order network models are becoming increasingly relevant for their ability to explicitly capture interactions between three or more entities in a complex system at once. In this paper, we study homophily, the tendency for alike individuals to form connections, as it pertains to higher-order interactions. We find that straightforward extensions of classical homophily measures to interactions of size 3 and larger are often inflated by homophily present in pairwise interactions. This inflation can even hide the presence of anti-homophily in higher-order interactions. Hence, we develop a structural measure of homophily, simplicial homophily, which decouples homophily in pairwise interactions from that of higher-order interactions. The definition applies when the network can be modeled as a simplicial complex, a mathematical abstraction which makes a closure assumption that for any higher-order relationship in the network, all corresponding subsets of that relationship occur in the data. Whereas previous work has used this closure assumption to develop a rich theory in algebraic topology, here we use the assumption to make empirical comparisons between interactions of different sizes. The simplicial homophily measure is validated theoretically using an extension of a stochastic block model for simplicial complexes and empirically in large-scale experiments across 16 datasets. We further find that simplicial homophily can be used to identify when node features are valuable for higher-order link prediction. Ultimately, this highlights a subtlety in studying node features in higher-order networks, as measures defined on groups of size k can inherit features described by interactions of size < k .

Funder

DOD | Office of the Secretary of Defense

Publisher

Proceedings of the National Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3