Metastable precipitation and ion–extractant transport in liquid–liquid separations of trivalent elements

Author:

Sun Pan12ORCID,Lin Xiao-Min3ORCID,Bera Mrinal K.2ORCID,Lin Binhua2ORCID,Ying Dongchen4ORCID,Chang Tieyan2ORCID,Bu Wei2ORCID,Schlossman Mark L.1ORCID

Affiliation:

1. Department of Physics, University of Illinois at Chicago, Chicago, IL 60607

2. ChemMatCARS, Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637

3. Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL 60439

4. Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637

Abstract

The extractant-assisted transport of metal ions from aqueous to organic environments by liquid–liquid extraction has been widely used to separate and recover critical elements on an industrial scale. While current efforts focus on designing better extractants and optimizing process conditions, the mechanism that underlies ionic transport remains poorly understood. Here, we report a nonequilibrium process in the bulk aqueous phase that influences interfacial ion transport: the formation of metastable ion–extractant precipitates away from the liquid–liquid interface, separated from it by a depletion region without precipitates. Although the precipitate is soluble in the organic phase, the depletion region separates the two and ions are sequestered in a long-lived metastable state. Since precipitation removes extractants from the aqueous phase, even extractants that are sparingly soluble in water will continue to be withdrawn from the organic phase to feed the aqueous precipitation process. Solute concentrations in both phases and the aqueous pH influence the temporal evolution of the process and ionic partitioning between the precipitate and organic phase. Aqueous ion–extractant precipitation during liquid–liquid extraction provides a reaction path that can influence the extraction kinetics, which plays an important role in designing advanced processes to separate rare earths and other minerals.

Funder

U.S. Department of Energy

National Science Foundation

Publisher

Proceedings of the National Academy of Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Liquid Interface Science at ChemMatCARS;Synchrotron Radiation News;2024-05-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3