Detecting inbreeding depression in structured populations

Author:

Lavanchy Eléonore12ORCID,Weir Bruce S.3ORCID,Goudet Jérôme12ORCID

Affiliation:

1. Department of Ecology and Evolution, University of Lausanne, Lausanne 1015, Switzerland

2. Population Genetics and Genomics group, Swiss Institute of Bioinformatics, University of Lausanne, Lausanne CH-1015, Switzerland

3. Department of Biostatistics, University of Washington, Seattle WA 98195

Abstract

Measuring inbreeding and its consequences on fitness is central for many areas in biology including human genetics and the conservation of endangered species. However, there is no consensus on the best method, neither for quantification of inbreeding itself nor for the model to estimate its effect on specific traits. We simulated traits based on simulated genomes from a large pedigree and empirical whole-genome sequences of human data from populations with various sizes and structures (from the 1,000 Genomes project). We compare the ability of various inbreeding coefficients ( F ) to quantify the strength of inbreeding depression: allele-sharing, two versions of the correlation of uniting gametes which differ in the weight they attribute to each locus and two identical-by-descent segments-based estimators. We also compare two models: the standard linear model and a linear mixed model (LMM) including a genetic relatedness matrix (GRM) as random effect to account for the nonindependence of observations. We find LMMs give better results in scenarios with population or family structure. Within the LMM, we compare three different GRMs and show that in homogeneous populations, there is little difference among the different F and GRM for inbreeding depression quantification. However, as soon as a strong population or family structure is present, the strength of inbreeding depression can be most efficiently estimated only if i) the phenotypes are regressed on F based on a weighted version of the correlation of uniting gametes, giving more weight to common alleles and ii) with the GRM obtained from an allele-sharing relatedness estimator.

Funder

Swiss National Science Foundation

US National Institutes of Health

Publisher

Proceedings of the National Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3