Estimation of SARS-CoV-2 fitness gains from genomic surveillance data without prior lineage classification

Author:

Donker Tjibbe1ORCID,Papathanassopoulos Alexis1ORCID,Ghosh Hiren1,Kociurzynski Raisa1ORCID,Felder Marius1,Grundmann Hajo1ORCID,Reuter Sandra1ORCID

Affiliation:

1. Institute for Infection Prevention and Control, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau 79106, Germany

Abstract

The emergence of SARS-CoV-2 variants with increased fitness has had a strong impact on the epidemiology of COVID-19, with the higher effective reproduction number of the viral variants leading to new epidemic waves. Tracking such variants and their genetic signatures, using data collected through genomic surveillance, is therefore crucial for forecasting likely surges in incidence. Current methods of estimating fitness advantages of variants rely on tracking the changing proportion of a particular lineage over time, but describing successful lineages in a rapidly evolving viral population is a difficult task. We propose a method of estimating fitness gains directly from nucleotide information generated by genomic surveillance, without a priori assigning isolates to lineages from phylogenies, based solely on the abundance of single nucleotide polymorphisms (SNPs). The method is based on mapping changes in the genetic population structure over time. Changes in the abundance of SNPs associated with periods of increasing fitness allow for the unbiased discovery of new variants, thereby obviating a deliberate lineage assignment and phylogenetic inference. We conclude that the method provides a fast and reliable way to estimate fitness advantages of variants without the need for a priori assigning isolates to lineages.

Funder

Bundesministerium für Bildung und Forschung

Publisher

Proceedings of the National Academy of Sciences

Reference25 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3