Balance and imbalance in biogeochemical cycles reflect the operation of closed, exchange, and open sets

Author:

Kemeny Preston Cosslett1ORCID,Torres Mark A.2,Fischer Woodward W.3ORCID,Blättler Clara L.1ORCID

Affiliation:

1. Department of the Geophysical Sciences, The University of Chicago, Chicago, IL

2. Department of Earth, Environmental, and Planetary Sciences, Rice University, Houston, TX

3. Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA

Abstract

Biogeochemical reactions modulate the chemical composition of the oceans and atmosphere, providing feedbacks that sustain planetary habitability over geological time. Here, we mathematically evaluate a suite of biogeochemical processes to identify combinations of reactions that stabilize atmospheric carbon dioxide by balancing fluxes of chemical species among the ocean, atmosphere, and geosphere. Unlike prior modeling efforts, this approach does not prescribe functional relationships between the rates of biogeochemical processes and environmental conditions. Our agnostic framework generates three types of stable reaction combinations: closed sets, where sources and sinks mutually cancel for all chemical reservoirs; exchange sets, where constant ocean–atmosphere conditions are maintained through the growth or destruction of crustal reservoirs; and open sets, where balance in alkalinity and carbon fluxes is accommodated by changes in other chemical components of seawater or the atmosphere. These three modes of operation have different characteristic timescales and may leave distinct evidence in the rock record. To provide a practical example of this theoretical framework, we applied the model to recast existing hypotheses for Cenozoic climate change based on feedbacks or shared forcing mechanisms. Overall, this work provides a systematic and simplified conceptual framework for understanding the function and evolution of global biogeochemical cycles.

Funder

The University of Chicago

National Science Foundation

Publisher

Proceedings of the National Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3