3D intrusions transport active surface microbial assemblages to the dark ocean

Author:

Freilich Mara A.1234ORCID,Poirier Camille5,Dever Mathieu6,Alou-Font Eva7ORCID,Allen John7,Cabornero Andrea7,Sudek Lisa8,Choi Chang Jae5,Ruiz Simón9ORCID,Pascual Ananda9,Farrar J. Thomas6,Johnston T. M. Shaun2ORCID,D’Asaro Eric A.10ORCID,Worden Alexandra Z.5811ORCID,Mahadevan Amala6ORCID

Affiliation:

1. Massachusetts Institute of Technology-Wood Hole Oceanographic Institution Joint Program in Oceanography, Woods Hole, MA 02543

2. Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093

3. Department of Earth, Environmental, and Planetary Sciences, Brown University, Providence, RI 02912

4. Division of Applied Mathematics, Brown University, Providence, RI 02912

5. GEOMAR—Helmholtz Centre for Ocean Research, Kiel 24105, Germany

6. Department of Physical Oceanography, Woods Hole Oceanographic Institution, Woods Hole, MA 02543

7. Sistema de Observación y Predicción Costero de las Illes Balears (SOCIB), Palma de Mallorca 07121, Spain

8. Physical & Biological Sciences Division, University of California, Santa Cruz, CA 95064

9. Instituto Mediterraneo de Estudios Avanzados (IMEDEA), Esporles 07190, Spain

10. Applied Physics Lab, University of Washington, Seattle, WA 98105

11. Marine Biological Laboratory, Woods Hole, MA 02543

Abstract

Subtropical oceans contribute significantly to global primary production, but the fate of the picophytoplankton that dominate in these low-nutrient regions is poorly understood. Working in the subtropical Mediterranean, we demonstrate that subduction of water at ocean fronts generates 3D intrusions with uncharacteristically high carbon, chlorophyll, and oxygen that extend below the sunlit photic zone into the dark ocean. These contain fresh picophytoplankton assemblages that resemble the photic-zone regions where the water originated. Intrusions propagate depth-dependent seasonal variations in microbial assemblages into the ocean interior. Strikingly, the intrusions included dominant biomass contributions from nonphotosynthetic bacteria and enrichment of enigmatic heterotrophic bacterial lineages. Thus, the intrusions not only deliver material that differs in composition and nutritional character from sinking detrital particles, but also drive shifts in bacterial community composition, organic matter processing, and interactions between surface and deep communities. Modeling efforts paired with global observations demonstrate that subduction can flux similar magnitudes of particulate organic carbon as sinking export, but is not accounted for in current export estimates and carbon cycle models. Intrusions formed by subduction are a particularly important mechanism for enhancing connectivity between surface and upper mesopelagic ecosystems in stratified subtropical ocean environments that are expanding due to the warming climate.

Funder

DOD | USN | Office of Naval Research

Gordon and Betty Moore Foundation

National Science Foundation

DOD | National Defense Science and Engineering Graduate

MIT | Environmental Solutions Initiative, Massachusetts Institute of Technology

MIT | Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology

Publisher

Proceedings of the National Academy of Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3