Nonlinear bias toward complex contagion in uncertain transmission settings

Author:

St-Onge Guillaume1ORCID,Hébert-Dufresne Laurent234ORCID,Allard Antoine245ORCID

Affiliation:

1. Laboratory for the Modeling of Biological and Socio-Technical Systems, Northeastern University, Boston, MA 02115

2. Vermont Complex Systems Center, University of Vermont, Burlington, VT 05401

3. Department of Computer Science, University of Vermont, Burlington, VT 05401

4. Département de physique, de génie physique et d’optique, Université Laval, Québec, QC G1V 0A6, Canada

5. Centre interdisciplinaire en modélisation mathématique, Université Laval, Québec, QC G1V 0A6, Canada

Abstract

Current epidemics in the biological and social domains are challenging the standard assumptions of mathematical contagion models. Chief among them are the complex patterns of transmission caused by heterogeneous group sizes and infection risk varying by orders of magnitude in different settings, like indoor versus outdoor gatherings in the COVID-19 pandemic or different moderation practices in social media communities. However, quantifying these heterogeneous levels of risk is difficult, and most models typically ignore them. Here, we include these features in an epidemic model on weighted hypergraphs to capture group-specific transmission rates. We study analytically the consequences of ignoring the heterogeneous transmissibility and find an induced superlinear infection rate during the emergence of a new outbreak, even though the underlying mechanism is a simple, linear contagion. The dynamics produced at the individual and group levels are therefore more similar to complex, nonlinear contagions, thus blurring the line between simple and complex contagions in realistic settings. We support this claim by introducing a Bayesian inference framework to quantify the nonlinearity of contagion processes. We show that simple contagions on real weighted hypergraphs are systematically biased toward the superlinear regime if the heterogeneity of the weights is ignored, greatly increasing the risk of erroneous classification as complex contagions. Our results provide an important cautionary tale for the challenging task of inferring transmission mechanisms from incidence data. Yet, it also paves the way for effective models that capture complex features of epidemics through nonlinear infection rates.

Funder

HHS | National Institutes of Health

UL | Sentinelle Nord, Université Laval

Council of State and Territorial Epidemiologists

FRQ | Fonds de recherche du Québec – Nature et technologies

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3