Self-terminating, heterogeneous solid–electrolyte interphase enables reversible Li–ether cointercalation in graphite anodes

Author:

Xia Dawei1,Jeong Heonjae234,Hou Dewen56,Tao Lei1ORCID,Li Tianyi7ORCID,Knight Kristin1,Hu Anyang1,Kamphaus Ethan P.3,Nordlund Dennis8,Sainio Sami8,Liu Yuzi6,Morris John R.1ORCID,Xu Wenqian7,Huang Haibo9,Li Luxi7,Xiong Hui5ORCID,Cheng Lei23ORCID,Lin Feng110ORCID

Affiliation:

1. Department of Chemistry, Virginia Tech, Blacksburg, VA 24061

2. Joint Center for Energy Storage Research, Argonne National Laboratory, Lemont, IL 60439

3. Materials Science Division, Argonne National Laboratory, Lemont, IL 60439

4. Department of Electronic Engineering, Gachon University, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, South Korea

5. Micron School of Materials Science and Engineering, Boise State University, Boise, ID 83725

6. Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL 60439

7. X-ray Science Division, Argonne National Laboratory, Lemont, IL 60439

8. Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025

9. Department of Food Science and Technology, Virginia Tech, Blacksburg, VA 24061

10. Department of Materials Science and Engineering, Virginia Tech, Blacksburg, VA 24061

Abstract

Ether solvents are suitable for formulating solid-electrolyte interphase (SEI)-less ion-solvent cointercalation electrolytes in graphite for Na-ion and K-ion batteries. However, ether-based electrolytes have been historically perceived to cause exfoliation of graphite and cell failure in Li-ion batteries. In this study, we develop strategies to achieve reversible Li–solvent cointercalation in graphite through combining appropriate Li salts and ether solvents. Specifically, we design 1M LiBF 4 1,2-dimethoxyethane (G1), which enables natural graphite to deliver ~91% initial Coulombic efficiency and >88% capacity retention after 400 cycles. We captured the spatial distribution of LiF at various length scales and quantified its heterogeneity. The electrolyte shows self-terminated reactivity on graphite edge planes and results in a grainy, fluorinated pseudo-SEI. The molecular origin of the pseudo-SEI is elucidated by ab initio molecular dynamics (AIMD) simulations. The operando synchrotron analyses further demonstrate the reversible and monotonous phase transformation of cointercalated graphite. Our findings demonstrate the feasibility of Li cointercalation chemistry in graphite for extreme-condition batteries. The work also paves the foundation for understanding and modulating the interphase generated by ether electrolytes in a broad range of electrodes and batteries.

Funder

USDA | National Institute of Food and Agriculture

U.S. Department of Energy

Publisher

Proceedings of the National Academy of Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3