Bio-catalyzed oxidation self-charging zinc–polymer batteries

Author:

Pan Jun1ORCID,Liu Yanhong2,Yang Jian3,Wu Jiawen14,Fan Hong Jin1ORCID

Affiliation:

1. School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore

2. School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271000, China

3. Key Laboratory of Colloid and Interface Chemistry Ministry of Education School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China

4. Institute of Flexible Electronics Technology of Tsinghua, Jiaxing, Zhejiang 314000, China

Abstract

Oxidation self-charging batteries have emerged with the demand for powering electronic devices around the clock. The low efficiency of self-charging has been the key challenge at present. Here, a more efficient autoxidation self-charging mechanism is realized by introducing hemoglobin (Hb) as a positive electrode additive in the polyaniline (PANI)-zinc battery system. The heme acts as a catalyst that reduces the energy barrier of the autoxidation reaction by regulating the charge and spin state of O 2 . To realize self-charging, the adsorbed O 2 molecules capture electrons of the reduced (discharged state) PANI, leading to the desorption of zinc ions and the oxidation of PANI to complete self-charging. The battery can discharge for 12 min (0.5 C) after 50 self-charging/discharge cycles, while there is nearly no discharge capacity in the absence of Hb. This biology-inspired electronic regulation strategy may inspire new ideas to boost the performance of self-charging batteries.

Funder

MOST | National Natural Science Foundation of China

Ministry of Education, Singapore, Academic Research Fund Tier 1

Ministry of Education, Singapore, Academic Research Fund Tier 2

Institute of Flexible Electronics Technology of Tsinghua, NTU, and Qiantang Science and Technology Innovation Center, China (QSTIC).

Publisher

Proceedings of the National Academy of Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3