Tailoring chemical bonds to design unconventional glasses

Author:

Raty Jean-Yves1ORCID,Bichara Christophe2,Schön Carl-Friedrich3,Gatti Carlo45ORCID,Wuttig Matthias36ORCID

Affiliation:

1. Condensed Matter Simulation, Université de Liège, Sart-Tilman B4000, Belgium

2. Centre Interdisciplinaire de Nanoscience de Marseille, Aix-Marseille University, CNRS UMR 7325, 13288 Marseille, France

3. Institute of Physics 1A, Rheinisch-Westfälische Technische Hochschule Aachen University, 52074 Aachen, Germany

4. Consiglio Nazionale delle Ricerche - Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”, Milano 20133, Italy

5. Istituto Lombardo Accademia di Scienze e Lettere, Milano 20121, Italy

6. Peter-Grünberg-Institute (PGI 10), Forschungszentrum Jülich, Jülich 52428, Germany

Abstract

Glasses are commonly described as disordered counterparts of the corresponding crystals; both usually share the same short-range order, but glasses lack long-range order. Here, a quantification of chemical bonding in a series of glasses and their corresponding crystals is performed, employing two quantum-chemical bonding descriptors, the number of electrons transferred and shared between adjacent atoms. For popular glasses like SiO 2 , GeSe 2 , and GeSe, the quantum-chemical bonding descriptors of the glass and the corresponding crystal hardly differ. This explains why these glasses possess a similar short-range order as their crystals. Unconventional glasses, which differ significantly in their short-range order and optical properties from the corresponding crystals are only found in a distinct region of the map spanned by the two bonding descriptors. This region contains crystals of GeTe, Sb 2 Te 3 , and GeSb 2 Te 4 , which employ metavalent bonding. Hence, unconventional glasses are only obtained for solids, whose crystals employ theses peculiar bonds.

Funder

Fonds De La Recherche Scientifique - FNRS

Fédération Wallonie-Bruxelles

Deutsche Forschungsgemeinschaft

Bundesministerium für Bildung und Forschung

Publisher

Proceedings of the National Academy of Sciences

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Decoupling Nucleation and Growth in Fast Crystallization of Phase Change Materials;Advanced Functional Materials;2024-05-11

2. Bonding in tellurides;Proceedings of the National Academy of Sciences;2024-04-29

3. Reply to Lee and Elliott: Changes of bonding upon crystallization in phase change materials;Proceedings of the National Academy of Sciences;2024-04-29

4. Growth of Textured Chalcogenide Thin Films and Their Functionalization through Confinement;physica status solidi (a);2024-04-09

5. Structural relaxation of amorphous phase change materials at room temperature;Journal of Applied Physics;2024-04-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3