Modulation of active center distance of hybrid perovskite for boosting photocatalytic reduction of carbon dioxide to ethylene

Author:

Li Linjuan1,Xu Dawei1,Xu Xiankui1,Tian Zheng1,Zhou Xue1,Yang Shenbo2,Zhang Zhonghai134ORCID

Affiliation:

1. Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China

2. Hongzhiwei Technology (Shanghai) Co. Ltd., Shanghai 200240, China

3. State Key Laboratory of Petroleum Molecular and Process Engineering (SKLPMPE), Sinopec Research Institute of Petroleum Processing Co., Ltd., Beijing 100083, China

4. State Key Laboratory of Petroleum Molecular and Process Engineering (SKLPMPE), East China Normal University, Shanghai 200062, China

Abstract

Solar-driven photocatalytic CO 2 reduction is an energy-efficient and sustainable strategy to mitigate CO 2 levels in the atmosphere. However, efficient and selective conversion of CO 2 into multi-carbon products, like C 2 H 4 , remains a great challenge due to slow multi-electron-proton transfer and sluggish C–C coupling. Herein, a two-dimensional thin-layered hybrid perovskite is fabricated through filling of oxygen into iodine vacancy in pristine DMASnI 3 (DMA = dimethylammonium). The rational-designed DMASnI 3 (O) induces shrinkage of active sites distance and facilitates dimerization of C–C coupling of intermediates. Upon simulated solar irradiation, the DMASnI 3 (O) photocatalyst achieves a high selectivity of 74.5%, corresponding to an impressive electron selectivity of 94.6%, for CO 2 to C 2 H 4 conversion and an effective C 2 H 4 yield of 11.2 μmol g −1 h −1 . In addition, the DMASnI 3 (O) inherits excellent water stability and implements long-term photocatalytic CO 2 reduction to C 2 H 4 in a water medium. This work establishes a unique paradigm to convert CO 2 to C 2+ hydrocarbons in a perovskite-based photocatalytic system.

Funder

MOST | National Natural Science Foundation of China

MOST | National Key Research and Development Program of China

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3