Global scale assessment of urban precipitation anomalies

Author:

Sui Xinxin1ORCID,Yang Zong-Liang2ORCID,Shepherd Marshall3,Niyogi Dev12ORCID

Affiliation:

1. Maseeh Department of Civil Architectural and Environmental Engineering, Cockrell School of Engineering, The University of Texas at Austin, Austin, TX 78712

2. Department of Earth and Planetary Sciences, Jackson School of Geosciences, The University of Texas at Austin, Austin, TX 78712

3. Department of Geography, University of Georgia, Athens, GA 30602

Abstract

Urbanization has accelerated dramatically across the world over the past decades. Urban influence on surface temperatures is now being considered as a correction term in climatological datasets. Although prior research has investigated urban influences on precipitation for specific cities or selected thunderstorm cases, a comprehensive examination of urban precipitation anomalies on a global scale remains limited. This research is a global analysis of urban precipitation anomalies for over one thousand cities worldwide. We find that more than 60% of the global cities and their downwind regions are receiving more precipitation than the surrounding rural areas. Moreover, the magnitude of these urban wet islands has nearly doubled in the past 20 y. Urban precipitation anomalies exhibit variations across different continents and climates, with cities in Africa, for example, exhibiting the largest urban annual and extreme precipitation anomalies. Cities are more prone to substantial urban precipitation anomalies under warm and humid climates compared to cold and dry climates. Cities with larger populations, pronounced urban heat island effects, and higher aerosol loads also show noticeable precipitation enhancements. This research maps global urban rainfall hotspots, establishing a foundation for the consideration of urban rainfall corrections in climatology datasets. This advancement holds promise for projecting extreme precipitation and fostering the development of more resilient cities in the future.

Publisher

Proceedings of the National Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3