Development of broad modulus profile upon polymer–polymer interface formation between immiscible glassy–rubbery domains

Author:

Gagnon Yannic J.1ORCID,Burton Justin C.1ORCID,Roth Connie B.1ORCID

Affiliation:

1. Department of Physics, Emory University, Atlanta, GA 30322

Abstract

Interfaces of glassy materials such as thin films, blends, and composites create strong unidirectional gradients to the local heterogeneous dynamics that can be used to elucidate the length scales and mechanisms associated with the dynamic heterogeneity of glasses. We focus on bilayer films of two different polymers with very different glass transition temperatures ( T g ) where previous work has demonstrated a long-range (∼200 nm) profile in local T g ( z ) is established between immiscible glassy and rubbery polymer domains when the polymer–polymer interface is formed to equilibrium. Here, we demonstrate that an equally long-ranged gradient in local modulus G ~ ( z ) is established when the polymer–polymer interface ( 5 nm) is formed between domains of glassy polystyrene (PS) and rubbery poly(butadiene) (PB), consistent with previous reports of a broad T g ( z ) profile in this system. A continuum physics model for the shear wave propagation caused by a quartz crystal microbalance across a PB/PS bilayer film is used to measure the viscoelastic properties of the bilayer during the evolution of the PB/PS interface showing the development of a broad gradient in local modulus G ~ ( z ) spanning 180 nm between the glassy and rubbery domains of PS and PB. We suggest these broad profiles in T g ( z ) and G ~ ( z ) arise from a coupling of the spectrum of vibrational modes across the polymer–polymer interface as a result of acoustic impedance matching of sound waves with λ 5 nm during interface broadening that can then trigger density fluctuations in the neighboring domain.

Funder

National Science Foundation

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3