Quantum Barkhausen noise induced by domain wall cotunneling

Author:

Simon C.1,Silevitch D.M.1ORCID,Stamp P.C.E.123,Rosenbaum T.F.1ORCID

Affiliation:

1. Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, CA 91125

2. Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z1, Canada

3. Pacific Institute of Theoretical Physics, University of British Columbia, Vancouver, BC V6T 1Z1, Canada

Abstract

Most macroscopic magnetic phenomena (including magnetic hysteresis) are typically understood classically. Here, we examine the dynamics of a uniaxial rare-earth ferromagnet deep within the quantum regime, so that domain wall motion, and the associated hysteresis, is initiated by quantum nucleation, which then grows into large-scale domain wall motion, which is observable as an unusual form of Barkhausen noise. We observe noncritical behavior in the resulting avalanche dynamics that only can be explained by going beyond traditional renormalization group methods or classical domain wall models. We find that this “quantum Barkhausen noise” exhibits two distinct mechanisms for domain wall movement, each of which is quantum-mechanical, but with very different dependences on an external magnetic field applied transverse to the spin (Ising) axis. These observations can be understood in terms of the correlated motion of pairs of domain walls, nucleated by cotunneling of plaquettes (sections of domain wall), with plaquette pairs correlated by dipolar interactions; this correlation is suppressed by the transverse field. Similar macroscopic correlations may be expected to appear in the hysteresis of other systems with long-range interactions.

Funder

U.S. Department of Energy

Canadian Government | Natural Sciences and Engineering Research Council of Canada

Publisher

Proceedings of the National Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3