Distinct lateral hypothalamic CaMKIIα neuronal populations regulate wakefulness and locomotor activity

Author:

Heiss Jaime E.1ORCID,Zhong Peng1,Lee Stephanie M.1,Yamanaka Akihiro2,Kilduff Thomas S.1ORCID

Affiliation:

1. Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, CA 94025

2. Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan

Abstract

For nearly a century, evidence has accumulated indicating that the lateral hypothalamus (LH) contains neurons essential to sustain wakefulness. While lesion or inactivation of LH neurons produces a profound increase in sleep, stimulation of inhibitory LH neurons promotes wakefulness. To date, the primary wake-promoting cells that have been identified in the LH are the hypocretin/orexin (Hcrt) neurons, yet these neurons have little impact on total sleep or wake duration across the 24-h period. Recently, we and others have identified other LH populations that increase wakefulness. In the present study, we conducted microendoscopic calcium imaging in the LH concomitant with EEG and locomotor activity (LMA) recordings and found that a subset of LH neurons that express Ca 2+ /calmodulin-dependent protein kinase IIα (CaMKIIα) are preferentially active during wakefulness. Chemogenetic activation of these neurons induced sustained wakefulness and greatly increased LMA even in the absence of Hcrt signaling. Few LH CaMKIIα-expressing neurons are hypocretinergic or histaminergic while a small but significant proportion are GABAergic. Ablation of LH inhibitory neurons followed by activation of the remaining LH CaMKIIα neurons induced similar levels of wakefulness but blunted the LMA increase. Ablated animals showed no significant changes in sleep architecture but both spontaneous LMA and high theta (8 to 10 Hz) power during wakefulness were reduced. Together, these findings indicate the existence of two subpopulations of LH CaMKIIα neurons: an inhibitory population that promotes locomotion without affecting sleep architecture and an excitatory population that promotes prolonged wakefulness even in the absence of Hcrt signaling.

Funder

HHS | NIH | National Institute of Neurological Disorders and Stroke

Ministry of Education, Culture, Sports, Science and Technology

Publisher

Proceedings of the National Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3