An evolutionary innovation for mating facilitates ecological niche expansion and buffers species against climate change

Author:

Moore Michael P.12ORCID,Nalley Sarah E.1ORCID,Hamadah Dalal1ORCID

Affiliation:

1. Department of Integrative Biology, University of Colorado Denver, Denver, CO 80217

2. Living Earth Collaborative, Washington University in St. Louis, St. Louis, MO 63130

Abstract

One of the drivers of life’s diversification has been the emergence of “evolutionary innovations”: The evolution of traits that grant access to underused ecological niches. Since ecological interactions can occur separately from mating, mating-related traits have not traditionally been considered factors in niche evolution. However, in order to persist in their environment, animals need to successfully mate just as much as they need to survive. Innovations that facilitate mating activity may therefore be an overlooked determinant of species’ ecological limits. Here, we show that species’ historical niches and responses to contemporary climate change are shaped by an innovation involved in mating—a waxy, ultra-violet-reflective pruinescence produced by male dragonflies. Physiological experiments in two species demonstrate that pruinescence reduces heating and water loss. Phylogenetic analyses show that pruinescence is gained after taxa begin adopting a thermohydrically stressful mating behavior. Further comparative analyses reveal that pruinose species are more likely to breed in exposed, open-canopy microhabitats. Biogeographic analyses uncover that pruinose species occupy warmer and drier regions in North America. Citizen-science observations of Pachydiplax longipennis suggest that the extent of pruinescence can be optimized to match the local conditions. Finally, temporal analyses indicate that pruinose species have been buffered against contemporary climate change. Overall, these historical and contemporary patterns show that successful mating can shape species’ niche limits in the same way as growth and survival.

Funder

CU | University of Colorado Denver

Living Earth Collaborative

Publisher

Proceedings of the National Academy of Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3