StratoLAMP: Label-free, multiplex digital loop-mediated isothermal amplification based on visual stratification of precipitate

Author:

Jin Meichi1,Ding Jingyi1,Zhou Yu12ORCID,Chen Jiazhao12,Wang Yi12,Li Zida13ORCID

Affiliation:

1. Department of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen 518060, China

2. Smart Medical Imaging, Learning and Engineering Lab, Department of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen 518060, China

3. Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen 518060, China

Abstract

Multiplex, digital nucleic acid detections have important biomedical applications, but the multiplexity of existing methods is predominantly achieved using fluorescent dyes or probes, making the detection complicated and costly. Here, we present the StratoLAMP for label-free, multiplex digital loop-mediated isothermal amplification based on visual stratification of the precipitate byproduct. The StratoLAMP designates two sets of primers with different concentrations to achieve different precipitate yields when amplifying different nucleic acid targets. In the detection, deep learning image analysis is used to stratify the precipitate within each droplet and determine the encapsulated targets for nucleic acid quantification. We investigated the effect of the amplification reagents and process on the precipitate generation and optimized the assay conditions. We then implemented a deep-learning image analysis pipeline for droplet detection, achieving an overall accuracy of 94.3%. In the application, the StratoLAMP successfully achieved the simultaneous quantification of two nucleic acid targets with high accuracy. By eliminating the need for fluorescence, StratoLAMP represents a unique concept toward label-free, multiplex nucleic acid assays and an analytical tool with great cost-effectiveness.

Funder

GDSTC | Natural Science Foundation of Guangdong Province

Shenzhen University

MOST | National Natural Science Foundation of China

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3