Integrating chemistry, fluid flow, and mechanics to drive spontaneous formation of three-dimensional (3D) patterns in anchored microstructures

Author:

Moradi Moslem1,Shklyaev Oleg E.1,Balazs Anna C.1ORCID

Affiliation:

1. Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, PA 15261

Abstract

Enzymatic reactions in solution drive the convection of confined fluids throughout the enclosing chambers and thereby couple the processes of reaction and convection. In these systems, the energy released from the chemical reactions generates a force, which propels the fluids’ spontaneous motion. Here, we use theoretical and computational modeling to determine how reaction-convection can be harnessed to tailor and control the dynamic behavior of soft matter immersed in solution. Our model system encompasses an array of surface-anchored, flexible posts in a millimeter-sized, fluid-filled chamber. Selected posts are coated with enzymes, which react with dissolved chemicals to produce buoyancy-driven fluid flows. We show that these chemically generated flows exert a force on both the coated (active) and passive posts and thus produce regular, self-organized patterns. Due to the specificity of enzymatic reactions, the posts display controllable kaleidoscopic behavior where one regular pattern is smoothly morphed into another with the addition of certain reactants. These spatiotemporal patterns also form “fingerprints” that distinctly characterize the system, reflecting the type of enzymes used, placement of the enzyme-coated posts, height of the chamber, and bending modulus of the elastic posts. The results reveal how reaction-convection provides concepts for designing soft matter that readily switches among multiple morphologies. This behavior enables microfluidic devices to be spontaneously reconfigured for specific applications without construction of new chambers and the fabrication of standalone sensors that operate without extraneous power sources.

Funder

National Science Foundation

Publisher

Proceedings of the National Academy of Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3