The importance of geography in forecasting future fire patterns under climate change

Author:

Syphard Alexandra D.1ORCID,Velazco Santiago José Elías23ORCID,Rose Miranda Brooke4ORCID,Franklin Janet5ORCID,Regan Helen M.6ORCID

Affiliation:

1. Conservation Biology Institute, Corvallis, OR 97333

2. Instituto de Biología Subtropical, Consejo Nacional de Investigaciones Científicas y Técnicas - Universidad Nacional de Misiones, Puerto Iguazú, Misiones 3370, Argentina

3. Programa de Pós-Graduação em Biodiversidade Neotropical, Universidade Federal da Integração Latino-Americana, Foz do Iguaçu, Paraná 85870-650, Brazil

4. Department of Botany and Plant Sciences, University of California, Riverside, CA 92521

5. Department of Geography, San Diego State University, San Diego, CA 92812

6. Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521

Abstract

An increasing amount of California’s landscape has burned in wildfires in recent decades, in conjunction with increasing temperatures and vapor pressure deficit due to climate change. As the wildland–urban interface expands, more people are exposed to and harmed by these extensive wildfires, which are also eroding the resilience of terrestrial ecosystems. With future wildfire activity expected to increase, there is an urgent demand for solutions that sustain healthy ecosystems and wildfire-resilient human communities. Those who manage disaster response, landscapes, and biodiversity rely on mapped projections of how fire activity may respond to climate change and other human factors. California wildfire is complex, however, and climate–fire relationships vary across the state. Given known geographical variability in drivers of fire activity, we asked whether the geographical extent of fire models used to create these projections may alter the interpretation of predictions. We compared models of fire occurrence spanning the entire state of California to models developed for individual ecoregions and then projected end-of-century future fire patterns under climate change scenarios. We trained a Maximum Entropy model with fire records and hydroclimatological variables from recent decades (1981 to 2010) as well as topographic and human infrastructure predictors. Results showed substantial variation in predictors of fire probability and mapped future projections of fire depending upon geographical extents of model boundaries. Only the ecoregion models, accounting for the unique patterns of vegetation, climate, and human infrastructure, projected an increase in fire in most forested regions of the state, congruent with predictions from other studies.

Funder

National Science Foundation

California Strategic Growth Council

Publisher

Proceedings of the National Academy of Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Climate change and California sustainability—Challenges and solutions;Proceedings of the National Academy of Sciences;2024-07-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3