The primacy of temporal dynamics in driving spatial self-organization of soil iron redox patterns

Author:

Dong Xiaoli1ORCID,Richter Daniel D.2ORCID,Thompson Aaron3ORCID,Wang Junna1

Affiliation:

1. Department of Environmental Science and Policy, University of California, Davis, CA 95616

2. Earth and Climate Sciences Division, Nicholas School of the Environment, Duke University, Durham, NC 27708

3. Department of Crop and Soil Sciences, University of Georgia, Athens, GA 30602

Abstract

This study investigates mechanisms that generate regularly spaced iron-rich bands in upland soils. These striking features appear in soils worldwide, but beyond a generalized association with changing redox, their genesis is yet to be explained. Upland soils exhibit significant redox fluctuations driven by rainfall, groundwater changes, or irrigation. Pattern formation in such systems provides an opportunity to investigate the temporal aspects of spatial self-organization, which have been heretofore understudied. By comparing multiple alternative mechanisms, we found that regular iron banding in upland soils is explained by coupling two sets of scale-dependent feedbacks, the general principle of Turing morphogenesis. First, clay dispersion and coagulation in iron redox fluctuations amplify soil Fe(III) aggregation and crystal growth to a level that negatively affects root growth. Second, the activation of this negative root response to highly crystalline Fe(III) leads to the formation of rhythmic iron bands. In forming iron bands, environmental variability plays a critical role. It creates alternating anoxic and oxic conditions for required pattern-forming processes to occur in distinctly separated times and determines durations of anoxic and oxic episodes, thereby controlling relative rates of processes accompanying oxidation and reduction reactions. As Turing morphogenesis requires ratios of certain process rates to be within a specific range, environmental variability thus modifies the likelihood that pattern formation will occur. Projected changes of climatic regime could significantly alter many spatially self-organized systems, as well as the ecological functioning associated with the striking patterns they present. This temporal dimension of pattern formation merits close attention in the future.

Funder

National Science Foundation

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3