Droplet-based mRNA sequencing of fixed and permeabilized cells by CLInt-seq allows for antigen-specific TCR cloning

Author:

Nesterenko Pavlo A.ORCID,McLaughlin Jami,Cheng Donghui,Bangayan Nathanael J.,Burton Sojo Giselle,Seet Christopher S.,Qin Yu,Mao Zhiyuan,Obusan Matthew B.ORCID,Phillips John W.,Witte Owen N.ORCID

Abstract

T cell receptors (TCRs) are generated by somatic recombination of V/D/J segments to produce up to 1015 unique sequences. Highly sensitive and specific techniques are required to isolate and identify the rare TCR sequences that respond to antigens of interest. Here, we describe the use of mRNA sequencing via cross-linker regulated intracellular phenotype (CLInt-Seq) for efficient recovery of antigen-specific TCRs in cells stained for combinations of intracellular proteins such as cytokines or transcription factors. This method enables high-throughput identification and isolation of low-frequency TCRs specific for any antigen. As a proof of principle, intracellular staining for TNFα and IFNγ identified cytomegalovirus (CMV)- and Epstein-Barr virus (EBV)-reactive TCRs with efficiencies similar to state-of-the-art peptide-MHC multimer methodology. In a separate experiment, regulatory T cells were profiled based on intracellular FOXP3 staining, demonstrating the ability to examine phenotypes based on transcription factors. We further optimized the intracellular staining conditions to use a chemically cleavable primary amine cross-linker compatible with current single-cell sequencing technology. CLInt-Seq for TNFα and IFNγ performed similarly to isolation with multimer staining for EBV-reactive TCRs. We anticipate CLInt-Seq will enable droplet-based single-cell mRNA analysis from any tissue where minor populations need to be isolated by intracellular markers.

Funder

HHS | NIH | National Cancer Institute

Parker Institute for Cancer Immunotherapy

UCLA Broad Stem Cell Research Center

USHHS Ruth L. Kirschstein Institutional National Research Service Award

HHS | National Institutes of Health

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3