Inference of dynamic systems from noisy and sparse data via manifold-constrained Gaussian processes

Author:

Yang ShihaoORCID,Wong Samuel W. K.ORCID,Kou S. C.

Abstract

Parameter estimation for nonlinear dynamic system models, represented by ordinary differential equations (ODEs), using noisy and sparse data, is a vital task in many fields. We propose a fast and accurate method, manifold-constrained Gaussian process inference (MAGI), for this task. MAGI uses a Gaussian process model over time series data, explicitly conditioned on the manifold constraint that derivatives of the Gaussian process must satisfy the ODE system. By doing so, we completely bypass the need for numerical integration and achieve substantial savings in computational time. MAGI is also suitable for inference with unobserved system components, which often occur in real experiments. MAGI is distinct from existing approaches as we provide a principled statistical construction under a Bayesian framework, which incorporates the ODE system through the manifold constraint. We demonstrate the accuracy and speed of MAGI using realistic examples based on physical experiments.

Funder

National Science Foundation

Gouvernement du Canada | Natural Sciences and Engineering Research Council of Canada

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Reference23 articles.

1. Oscillatory Expression of the bHLH Factor Hes1 Regulated by a Negative Feedback Loop

2. D. B. Forger , Biological Clocks, Rhythms, and Oscillations: The Theory of Biological Timekeeping (MIT Press, 2017).

3. Differential equation modeling of HIV viral fitness experiments: Model identification, model selection, and multimodel inference;Miao;Biometrics,2009

4. S. Busenberg , Differential Equations and Applications in Ecology, Epidemics, and Population Problems (Elsevier, 2012).

5. N. S. Gorbach , S. Bauer , J. M Buhmann . “Scalable variational inference for dynamical systems” in Advances in Neural Information Processing Systems, I. Guyon , Eds. (Curran Associates Inc., Red Hook, NY, 2017), pp. 4806–4815.

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Gaussian process learning of nonlinear dynamics;Communications in Nonlinear Science and Numerical Simulation;2024-11

2. Parameter Inference Based on Gaussian Processes Informed by Nonlinear Partial Differential Equations;SIAM/ASA Journal on Uncertainty Quantification;2024-08-30

3. Green’s matching: an efficient approach to parameter estimation in complex dynamic systems;Journal of the Royal Statistical Society Series B: Statistical Methodology;2024-04-12

4. Revealing Higher-Order Interactions in High-Dimensional Complex Systems: A Data-Driven Approach;Physical Review X;2024-03-18

5. A Bayesian Collocation Integral Method for Parameter Estimation in Ordinary Differential Equations;Journal of Computational and Graphical Statistics;2024-02-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3