Volatile chemical product emissions enhance ozone and modulate urban chemistry

Author:

Coggon Matthew M.ORCID,Gkatzelis Georgios I.ORCID,McDonald Brian C.ORCID,Gilman Jessica B.ORCID,Schwantes Rebecca H.ORCID,Abuhassan NaderORCID,Aikin Kenneth C.,Arend Mark F.ORCID,Berkoff Timothy A.,Brown Steven S.ORCID,Campos Teresa L.ORCID,Dickerson Russell R.ORCID,Gronoff GuillaumeORCID,Hurley James F.,Isaacman-VanWertz GabrielORCID,Koss Abigail R.ORCID,Li MengORCID,McKeen Stuart A.ORCID,Moshary Fred,Peischl JeffORCID,Pospisilova VeronikaORCID,Ren Xinrong,Wilson Anna,Wu YonghuaORCID,Trainer MichaelORCID,Warneke CarstenORCID

Abstract

Decades of air quality improvements have substantially reduced the motor vehicle emissions of volatile organic compounds (VOCs). Today, volatile chemical products (VCPs) are responsible for half of the petrochemical VOCs emitted in major urban areas. We show that VCP emissions are ubiquitous in US and European cities and scale with population density. We report significant VCP emissions for New York City (NYC), including a monoterpene flux of 14.7 to 24.4 kg ⋅ d−1 ⋅ km−2 from fragranced VCPs and other anthropogenic sources, which is comparable to that of a summertime forest. Photochemical modeling of an extreme heat event, with ozone well in excess of US standards, illustrates the significant impact of VCPs on air quality. In the most populated regions of NYC, ozone was sensitive to anthropogenic VOCs (AVOCs), even in the presence of biogenic sources. Within this VOC-sensitive regime, AVOCs contributed upwards of ∼20 ppb to maximum 8-h average ozone. VCPs accounted for more than 50% of this total AVOC contribution. Emissions from fragranced VCPs, including personal care and cleaning products, account for at least 50% of the ozone attributed to VCPs. We show that model simulations of ozone depend foremost on the magnitude of VCP emissions and that the addition of oxygenated VCP chemistry impacts simulations of key atmospheric oxidation products. NYC is a case study for developed megacities, and the impacts of VCPs on local ozone are likely similar for other major urban regions across North America or Europe.

Funder

DOC | National Oceanic and Atmospheric Administration

U.S. Environmental Protection Agency

Northeast States for Coordinated Air use Management

NASA Tropospheric Composition Program

NOAA Hollings Scholarship

National Institute for Standards and Technology

CIRES Innovative Research Program

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 139 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3