Freeze tolerance influenced forest cover and hydrology during the Pennsylvanian

Author:

Matthaeus William J.ORCID,Macarewich Sophia I.ORCID,Richey Jon D.ORCID,Wilson Jonathan P.ORCID,McElwain Jennifer C.,Montañez Isabel P.ORCID,DiMichele William A.ORCID,Hren Michael T.,Poulsen Christopher J.ORCID,White Joseph D.

Abstract

The distribution of forest cover alters Earth surface mass and energy exchange and is controlled by physiology, which determines plant environmental limits. Ancient plant physiology, therefore, likely affected vegetation-climate feedbacks. We combine climate modeling and ecosystem-process modeling to simulate arboreal vegetation in the late Paleozoic ice age. Using GENESIS V3 global climate model simulations, varying pCO2, pO2, and ice extent for the Pennsylvanian, and fossil-derived leaf C:N, maximum stomatal conductance, and specific conductivity for several major Carboniferous plant groups, we simulated global ecosystem processes at a 2° resolution with Paleo-BGC. Based on leaf water constraints, Pangaea could have supported widespread arboreal plant growth and forest cover. However, these models do not account for the impacts of freezing on plants. According to our interpretation, freezing would have affected plants in 59% of unglaciated land during peak glacial periods and 73% during interglacials, when more high-latitude land was unglaciated. Comparing forest cover, minimum temperatures, and paleo-locations of Pennsylvanian-aged plant fossils from the Paleobiology Database supports restriction of forest extent due to freezing. Many genera were limited to unglaciated land where temperatures remained above −4 °C. Freeze-intolerance of Pennsylvanian arboreal vegetation had the potential to alter surface runoff, silicate weathering, CO2 levels, and climate forcing. As a bounding case, we assume total plant mortality at −4 °C and estimate that contracting forest cover increased net global surface runoff by up to 6.1%. Repeated freezing likely influenced freeze- and drought-tolerance evolution in lineages like the coniferophytes, which became increasingly dominant in the Permian and early Mesozoic.

Funder

NSF | GEO | Division of Earth Sciences

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3