Abstract
The ability to monitor the release of neurotransmitters during synaptic transmission would significantly impact the diagnosis and treatment of neurological diseases. Here, we present a DNA-based enzymatic nanosensor for quantitative detection of acetylcholine (ACh) in the peripheral nervous system of living mice. ACh nanosensors consist of DNA as a scaffold, acetylcholinesterase as a recognition component, pH-sensitive fluorophores as signal generators, and α-bungarotoxin as a targeting moiety. We demonstrate the utility of the nanosensors in the submandibular ganglia of living mice to sensitively detect ACh ranging from 0.228 to 358 μM. In addition, the sensor response upon electrical stimulation of the efferent nerve is dose dependent, reversible, and we observe a reduction of ∼76% in sensor signal upon pharmacological inhibition of ACh release. Equipped with an advanced imaging processing tool, we further spatially resolve ACh signal propagation on the tissue level. Our platform enables sensitive measurement and mapping of ACh transmission in the peripheral nervous system.
Funder
HHS | NIH | NIH Office of the Director
HHS | NIH | National Institute of Neurological Disorders and Stroke
NSF | ENG | Division of Chemical, Bioengineering, Environmental, and Transport Systems
Publisher
Proceedings of the National Academy of Sciences
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献