Abstract
A chemiresistive sensor is described for the detection of methane (CH4), a potent greenhouse gas that also poses an explosion hazard in air. The chemiresistor allows for the low-power, low-cost, and distributed sensing of CH4 at room temperature in air with environmental implications for gas leak detection in homes, production facilities, and pipelines. Specifically, the chemiresistors are based on single-walled carbon nanotubes (SWCNTs) noncovalently functionalized with poly(4-vinylpyridine) (P4VP) that enables the incorporation of a platinum-polyoxometalate (Pt-POM) CH4 oxidation precatalyst into the sensor by P4VP coordination. The resulting SWCNT-P4VP-Pt-POM composite showed ppm-level sensitivity to CH4 and good stability to air as well as time, wherein the generation of a high-valent platinum intermediate during CH4 oxidation is proposed as the origin of the observed chemiresistive response. The chemiresistor was found to exhibit selectivity for CH4 over heavier hydrocarbons such as n-hexane, benzene, toluene, and o-xylene, as well as gases, including carbon dioxide and hydrogen. The utility of the sensor in detecting CH4 using a simple handheld multimeter was also demonstrated.
Publisher
Proceedings of the National Academy of Sciences
Reference50 articles.
1. G. Myhre , "Anthropogenic and natural radiative forcing” in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, T. F. Stocker , Eds. (Cambridge University Press, Cambridge, UK, 2013), pp. 659–740.
2. Flammability characteristics of combustible gases and vapors;Zabetakis;U.S. Bureau of Mines Bulletin,1965
3. The growth rate and distribution of atmospheric methane;Dlugokencky;J. Geophys. Res.,1994
4. A review of developments in near infrared methane detection based on tunable diode laser;Shemshad;Sens. Actuators B Chem.,2012
5. Toward a better understanding and quantification of methane emissions from shale gas development
Cited by
36 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献