Fluid-like elastic response of superionic NH3 in Uranus and Neptune

Author:

Kimura TomoakiORCID,Murakami MotohikoORCID

Abstract

Nondipolar magnetic fields exhibited at Uranus and Neptune may be derived from a unique geometry of their icy mantle with a thin convective layer on top of a stratified nonconvective layer. The presence of superionic H2O and NH3 has been thought as an explanation to stabilize such nonconvective regions. However, a lack of experimental data on the physical properties of those superionic phases has prevented the clarification of this matter. Here, our Brillouin measurements for NH3 show a two-stage reduction in longitudinal wave velocity (Vp) by ∼9% and ∼20% relative to the molecular solid in the temperature range of 1,500 K and 2,000 K above 47 GPa. While the first Vp reduction observed at the boundary to the superionic α phase was most likely due to the onset of the hydrogen diffusion, the further one was likely attributed to the transition to another superionic phase, denoted γ phase, exhibiting the higher diffusivity. The reduction rate of Vp in the superionic γ phase, comparable to that of the liquid, implies that this phase elastically behaves almost like a liquid. Our measurements show that superionic NH3 becomes convective and cannot contribute to the internal stratification.

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3