A jamming plane of sphere packings

Author:

Jin YuliangORCID,Yoshino HajimeORCID

Abstract

The concept of jamming has attracted great research interest due to its broad relevance in soft-matter, such as liquids, glasses, colloids, foams, and granular materials, and its deep connection to sphere packing and optimization problems. Here, we show that the domain of amorphous jammed states of frictionless spheres can be significantly extended, from the well-known jamming-point at a fixed density, to a jamming-plane that spans the density and shear strain axes. We explore the jamming-plane, via athermal and thermal simulations of compression and shear jamming, with initial equilibrium configurations prepared by an efficient swap algorithm. The jamming-plane can be divided into reversible-jamming and irreversible-jamming regimes, based on the reversibility of the route from the initial configuration to jamming. Our results suggest that the irreversible-jamming behavior reflects an escape from the metastable glass basin to which the initial configuration belongs to or the absence of such basins. All jammed states, either compression- or shear-jammed, are isostatic and exhibit jamming criticality of the same universality class. However, the anisotropy of contact networks nontrivially depends on the jamming density and strain. Among all state points on the jamming-plane, the jamming-point is a unique one with the minimum jamming density and the maximum randomness. For crystalline packings, the jamming-plane shrinks into a single shear jamming-line that is independent of initial configurations. Our study paves the way for solving the long-standing random close-packing problem and provides a more complete framework to understand jamming.

Funder

Ministry of Education, Culture, Sports, Science and Technology

National Natural Science Foundation of China

Chinese Academy of Sciences

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3