Free recall scaling laws and short-term memory effects in a latching attractor network

Author:

Boboeva VezhaORCID,Pezzotta AlbertoORCID,Clopath ClaudiaORCID

Abstract

Despite the complexity of human memory, paradigms like free recall have revealed robust qualitative and quantitative characteristics, such as power laws governing recall capacity. Although abstract random matrix models could explain such laws, the possibility of their implementation in large networks of interacting neurons has so far remained underexplored. We study an attractor network model of long-term memory endowed with firing rate adaptation and global inhibition. Under appropriate conditions, the transitioning behavior of the network from memory to memory is constrained by limit cycles that prevent the network from recalling all memories, with scaling similar to what has been found in experiments. When the model is supplemented with a heteroassociative learning rule, complementing the standard autoassociative learning rule, as well as short-term synaptic facilitation, our model reproduces other key findings in the free recall literature, namely, serial position effects, contiguity and forward asymmetry effects, and the semantic effects found to guide memory recall. The model is consistent with a broad series of manipulations aimed at gaining a better understanding of the variables that affect recall, such as the role of rehearsal, presentation rates, and continuous and/or end-of-list distractor conditions. We predict that recall capacity may be increased with the addition of small amounts of noise, for example, in the form of weak random stimuli during recall. Finally, we predict that, although the statistics of the encoded memories has a strong effect on the recall capacity, the power laws governing recall capacity may still be expected to hold.

Funder

RCUK | Biotechnology and Biological Sciences Research Council

Wellcome

Simons Foundation

RCUK | Engineering and Physical Sciences Research Council

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3