Non-Markovian modeling of protein folding

Author:

Ayaz CihanORCID,Tepper Lucas,Brünig Florian N.ORCID,Kappler JulianORCID,Daldrop Jan O.,Netz Roland R.ORCID

Abstract

We extract the folding free energy landscape and the time-dependent friction function, the two ingredients of the generalized Langevin equation (GLE), from explicit-water molecular dynamics (MD) simulations of the α-helix forming polypeptide alanine9 for a one-dimensional reaction coordinate based on the sum of the native H-bond distances. Folding and unfolding times from numerical integration of the GLE agree accurately with MD results, which demonstrate the robustness of our GLE-based non-Markovian model. In contrast, Markovian models do not accurately describe the peptide kinetics and in particular, cannot reproduce the folding and unfolding kinetics simultaneously, even if a spatially dependent friction profile is used. Analysis of the GLE demonstrates that memory effects in the friction significantly speed up peptide folding and unfolding kinetics, as predicted by the Grote–Hynes theory, and are the cause of anomalous diffusion in configuration space. Our methods are applicable to any reaction coordinate and in principle, also to experimental trajectories from single-molecule experiments. Our results demonstrate that a consistent description of protein-folding dynamics must account for memory friction effects.

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 68 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Coarse-Graining Conformational Dynamics with Multidimensional Generalized Langevin Equation: How, When, and Why;Journal of Chemical Theory and Computation;2024-09-11

2. Long-term memory induced correction to Arrhenius law;Nature Communications;2024-08-28

3. Transition path properties for one-dimensional non-Markovian models;Journal of Physics A: Mathematical and Theoretical;2024-08-21

4. Data-Driven Learning of the Generalized Langevin Equation with State-Dependent Memory;Physical Review Letters;2024-08-13

5. Parameter inference for degenerate diffusion processes;Stochastic Processes and their Applications;2024-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3