Rotational dynamics and transition mechanisms of surface-adsorbed proteins

Author:

Zhang Shuai12ORCID,Sadre Robbie3,Legg Benjamin A.12,Pyles Harley45,Perciano Talita3ORCID,Bethel E. Wes36ORCID,Baker David457ORCID,Rübel Oliver3,De Yoreo James J.12

Affiliation:

1. Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195

2. Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352

3. Scientific Data Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720

4. Department of Biochemistry, University of Washington, Seattle, WA 98195

5. Institute for Protein Design, University of Washington, Seattle, WA 98195

6. Department of Computer Science, San Francisco State University, San Francisco, CA 94132

7. HHMI, University of Washington, Seattle, WA, 98195

Abstract

Significance The exquisite organization exhibited by hybrid biomolecular–inorganic materials in nature has inspired the development of synthetic analogues for numerous applications. Nevertheless, a mechanistic picture of the energetic controls and response dynamics leading to organization is lacking. Here, we pair high-speed atomic force microscopy with machine learning and Monte Carlo simulations to analyze the rotational dynamics of rod-like proteins on a crystal lattice, simultaneously quantifying the orientational energy landscape and transition probabilities between energetically favorable orientations. Although rotations largely follow Brownian diffusion, proteins often make large jumps in orientation, thus rapidly overcoming barriers that usually inhibit rotation. Moreover, the rotational dynamics can be tuned via protein size and solution chemistry, providing tools for controlling biomolecular assembly at inorganic interfaces.

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3