A kernel-modulated SIR model for Covid-19 contagious spread from county to continent

Author:

Geng XiaolongORCID,Katul Gabriel G.ORCID,Gerges FirasORCID,Bou-Zeid ElieORCID,Nassif HaniORCID,Boufadel Michel C.

Abstract

The tempo-spatial patterns of Covid-19 infections are a result of nested personal, societal, and political decisions that involve complicated epidemiological dynamics across overlapping spatial scales. High infection “hotspots” interspersed within regions where infections remained sporadic were ubiquitous early in the outbreak, but the spatial signature of the infection evolved to affect most regions equally, albeit with distinct temporal patterns. The sparseness of Covid-19 infections in the United States was analyzed at scales spanning from 10 to 2,600 km (county to continental scale). Spatial evolution of Covid-19 cases in the United States followed multifractal scaling. A rapid increase in the spatial correlation was identified early in the outbreak (March to April). Then, the increase continued at a slower rate and approached the spatial correlation of human population. Instead of adopting agent-based models that require tracking of individuals, a kernel-modulated approach is developed to characterize the dynamic spreading of disease in a multifractal distributed susceptible population. Multiphase Covid-19 epidemics were reasonably reproduced by the proposed kernel-modulated susceptible–infectious–recovered (SIR) model. The work explained the fact that while the reproduction number was reduced due to nonpharmaceutical interventions (e.g., masks, social distancing, etc.), subsequent multiple epidemic waves still occurred; this was due to an increase in susceptible population flow following a relaxation of travel restrictions and corollary stay-at-home orders. This study provides an original interpretation of Covid-19 spread together with a pragmatic approach that can be imminently used to capture the spatial intermittency at all epidemiologically relevant scales while preserving the “disordered” spatial pattern of infectious cases.

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Reference50 articles.

1. J. H. University , COVID-19 Dashboard by the Center for Systems Science and Engineering (CSSE, 2021).

2. P. Sharkey , The US has a collective action problem that’s larger than the coronavirus crisis: Data show one of the strongest predictors of social distancing behavior is attitudes toward climate change. Vox (2020). https://www.vox.com/2020/4/10/21216216/coronavirus-social-distancing-texas-unacast-climate-change. Accessed 14 October 2020.

3. A spatial analysis of the COVID-19 period prevalence in U.S. Counties through June 28, 2020: Where geography matters?;Sun;Ann. Epidemiol.,2020

4. Spatial analysis of COVID-19 clusters and contextual factors in New York City

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3