Zeolite-like performance for xylene isomer purification using polymer-derived carbon membranes

Author:

Ma YaoORCID,Bruno Nicholas C.,Zhang FengyiORCID,Finn M. G.ORCID,Lively Ryan P.ORCID

Abstract

Polymers of intrinsic microporosity (PIMs) have been used as precursors for the fabrication of porous carbon molecular sieve (CMS) membranes. PIM-1, a prototypical PIM material, uses a fused-ring structure to increase chain rigidity between spirobisindane repeat units. These two factors inhibit effective chain packing, thus resulting in high free volume within the membrane. However, a decrease of pore size and porosity was observed after pyrolytic conversion of PIM-1 to CMS membranes, attributed to the destruction of the spirocenter, which results in the “flattening” of the polymer backbone and graphite-like stacking of carbonaceous strands. Here, a spirobifluorene-based polymer of intrinsic microporosity (PIM-SBF) was synthesized and used to fabricate CMS membranes that showed significant increases in p-xylene permeability (approximately four times), with little loss in p-xylene/o-xylene selectivity (13.4 versus 14.7) for equimolar xylene vapor separations when compared to PIM-1–derived CMS membranes. This work suggests that it is feasible to fabricate such highly microporous CMS membranes with performances that exceed current state-of-the-art zeolites at high xylene loadings.

Funder

Exxon Mobil Corporation | ExxonMobil Research and Engineering Company

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3