Abstract
Understanding in a unified manner the generic and chemically specific aspects of activated dynamics in diverse glass-forming liquids over 14 or more decades in time is a grand challenge in condensed matter physics, physical chemistry, and materials science and engineering. Large families of conceptually distinct models have postulated a causal connection with qualitatively different “order parameters” including various measures of structure, free volume, thermodynamic properties, short or intermediate time dynamics, and mechanical properties. Construction of a predictive theory that covers both the noncooperative and cooperative activated relaxation regimes remains elusive. Here, we test using solely experimental data a recent microscopic dynamical theory prediction that although activated relaxation is a spatially coupled local–nonlocal event with barriers quantified by local pair structure, it can also be understood based on the dimensionless compressibility via an equilibrium statistical mechanics connection between thermodynamics and structure. This prediction is found to be consistent with observations on diverse fragile molecular liquids under isobaric and isochoric conditions and provides a different conceptual view of the global relaxation map. As a corollary, a theoretical basis is established for the structural relaxation time scale growing exponentially with inverse temperature to a high power, consistent with experiments in the deeply supercooled regime. A criterion for the irrelevance of collective elasticity effects is deduced and shown to be consistent with viscous flow in low-fragility inorganic network-forming melts. Finally, implications for relaxation in the equilibrated deep glass state are briefly considered.
Funder
DOE | SC | Basic Energy Sciences
Publisher
Proceedings of the National Academy of Sciences
Cited by
37 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献