The male germline-specific protein MAPS is indispensable for pachynema progression and fertility

Author:

Li MiaoORCID,Zheng Jiahuan,Li GaopengORCID,Lin Zexiong,Li Dongliang,Liu Dongteng,Feng Haiwei,Cao DandanORCID,Ng Ernest H. Y.,Li Raymond H. W.,Han Chunsheng,Yeung William S. B.ORCID,Chow Louise T.,Wang HengbinORCID,Liu KuiORCID

Abstract

Meiosis is a specialized cell division that creates haploid germ cells from diploid progenitors. Through differential RNA expression analyses, we previously identified a number of mouse genes that were dramatically elevated in spermatocytes, relative to their very low expression in spermatogonia and somatic organs. Here, we investigated in detail 1700102P08Rik, one of these genes, and independently conclude that it encodes a male germline-specific protein, in agreement with a recent report. We demonstrated that it is essential for pachynema progression in spermatocytes and named it male pachynema-specific (MAPS) protein. Mice lacking Maps (Maps−/−) suffered from pachytene arrest and spermatocyte death, leading to male infertility, whereas female fertility was not affected. Interestingly, pubertal Maps−/− spermatocytes were arrested at early pachytene stage, accompanied by defects in DNA double-strand break (DSB) repair, crossover formation, and XY body formation. In contrast, adult Maps−/− spermatocytes only exhibited partially defective crossover but nonetheless were delayed or failed in progression from early to mid- and late pachytene stage, resulting in cell death. Furthermore, we report a significant transcriptional dysregulation in autosomes and XY chromosomes in both pubertal and adult Maps−/− pachytene spermatocytes, including failed meiotic sex chromosome inactivation (MSCI). Further experiments revealed that MAPS overexpression in vitro dramatically decreased the ubiquitination levels of cellular proteins. Conversely, in Maps−/− pachytene cells, protein ubiquitination was dramatically increased, likely contributing to the large-scale disruption in gene expression in pachytene cells. Thus, MAPS is a protein essential for pachynema progression in male mice, possibly in mammals in general.

Funder

Hong Kong Research Grant Council

Sanming Project of Medicine in Shenzhen

Shenzhen-Hong Kong Innovation Circle Type D

Shenzhen Science and Technology Program

HKU-SZH Fund for Shenzhen Key Medical Discipline

High Level-Hospital Program, Health Commission of Guangdong Province, China

National Key R&D Program of China,

National Natural Science Foundation of China

National Institute of Health

Anderson Family Endowment Fund

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3