Decoupling expression and editing preferences of ADAR1 p150 and p110 isoforms

Author:

Sun TonyORCID,Yu Yingpu,Wu Xianfang,Acevedo Ashley,Luo Ji-DungORCID,Wang JiayiORCID,Schneider William M.,Hurwitz BrianORCID,Rosenberg Brad R.ORCID,Chung HachungORCID,Rice Charles M.ORCID

Abstract

Human adenosine deaminase acting on RNA 1 (ADAR1) catalyzes adenosine-to-inosine deamination reactions on double-stranded RNA molecules to regulate cellular responses to endogenous and exogenous RNA. Defective ADAR1 editing leads to disorders such as Aicardi-Goutières syndrome, an autoinflammatory disease that manifests in the brain and skin, and dyschromatosis symmetrica hereditaria, a skin pigmentation disorder. Two ADAR1 protein isoforms, p150 (150 kDa) and p110 (110 kDa), are expressed and can edit RNA, but the contribution of each isoform to the editing landscape remains unclear, largely because of the challenges in expressing p150 without p110. In this study, we demonstrate that p110 is coexpressed with p150 from the canonical p150-encoding mRNA due to leaky ribosome scanning downstream of the p150 start codon. The presence of a strong Kozak consensus context surrounding the p110 start codon suggests the p150 mRNA is optimized to leak p110 alongside expression of p150. To reduce leaky scanning and translation initiation at the p110 start codon, we introduced synonymous mutations in the coding region between the p150 and p110 start codons. Cells expressing p150 constructs with these mutations produced significantly reduced levels of p110. Editing analysis of total RNA from ADAR1 knockout cells reconstituted separately with modified p150 and p110 revealed that more than half of the A-to-I edit sites are selectively edited by p150, and the other half are edited by either p150 or p110. This method of isoform-selective editing analysis, making use of the modified p150, has the potential to be adapted for other cellular contexts.

Funder

HHS | National Institutes of Health

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3