Abstract
Local adaptations can determine the potential of populations to respond to environmental changes, yet adaptive genetic variation is commonly ignored in models forecasting species vulnerability and biogeographical shifts under future climate change. Here we integrate genomic and ecological modeling approaches to identify genetic adaptations associated with climate in two cryptic forest bats. We then incorporate this information directly into forecasts of range changes under future climate change and assessment of population persistence through the spread of climate-adaptive genetic variation (evolutionary rescue potential). Considering climate-adaptive potential reduced range loss projections, suggesting that failure to account for intraspecific variability can result in overestimation of future losses. On the other hand, range overlap between species was projected to increase, indicating that interspecific competition is likely to play an important role in limiting species’ future ranges. We show that although evolutionary rescue is possible, it depends on a population’s adaptive capacity and connectivity. Hence, we stress the importance of incorporating genomic data and landscape connectivity in climate change vulnerability assessments and conservation management.
Funder
NERC Environmental Bioinformatics Centre
Publisher
Proceedings of the National Academy of Sciences
Cited by
331 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献