Signatures of slip in dewetting polymer films

Author:

Peschka DirkORCID,Haefner Sabrina,Marquant Ludovic,Jacobs KarinORCID,Münch Andreas,Wagner Barbara

Abstract

Thin polymer films on hydrophobic substrates are susceptible to rupture and hole formation. This, in turn, initiates a complex dewetting process, which ultimately leads to characteristic droplet patterns. Experimental and theoretical studies suggest that the type of droplet pattern depends on the specific interfacial condition between the polymer and the substrate. Predicting the morphological evolution over long timescales and on the different length scales involved is a major computational challenge. In this study, a highly adaptive numerical scheme is presented, which allows for following the dewetting process deep into the nonlinear regime of the model equations and captures the complex dynamics, including the shedding of droplets. In addition, our numerical results predict the previously unknown shedding of satellite droplets during the destabilization of liquid ridges that form during the late stages of the dewetting process. While the formation of satellite droplets is well known in the context of elongating fluid filaments and jets, we show here that, for dewetting liquid ridges, this property can be dramatically altered by the interfacial condition between polymer and substrate, namely slip. This work shows how dissipative processes can be used to systematically tune the formation of patterns.

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3