Sampling can be faster than optimization

Author:

Ma Yi-AnORCID,Chen YuansiORCID,Jin Chi,Flammarion Nicolas,Jordan Michael I.ORCID

Abstract

Optimization algorithms and Monte Carlo sampling algorithms have provided the computational foundations for the rapid growth in applications of statistical machine learning in recent years. There is, however, limited theoretical understanding of the relationships between these 2 kinds of methodology, and limited understanding of relative strengths and weaknesses. Moreover, existing results have been obtained primarily in the setting of convex functions (for optimization) and log-concave functions (for sampling). In this setting, where local properties determine global properties, optimization algorithms are unsurprisingly more efficient computationally than sampling algorithms. We instead examine a class of nonconvex objective functions that arise in mixture modeling and multistable systems. In this nonconvex setting, we find that the computational complexity of sampling algorithms scales linearly with the model dimension while that of optimization algorithms scales exponentially.

Funder

DOD | United States Navy | ONR | Office of Naval Research Global

DOD | United States Army | RDECOM | Army Research Office

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Reference45 articles.

1. Comparing sweep strategies for stochastic relaxation;Amit;J. Multivar. Anal.,1991

2. On rates of convergence of stochastic relaxation for Gaussian and non-Gaussian distributions;Amit;J. Multivar. Anal.,1991

3. Updating schemes, correlation structure, blocking and parameterization for the Gibbs sampler;Roberts;J. Roy. Stat. Soc. B,1997

4. Maximum likelihood from incomplete data via the EM algorithm;Dempster;J. R. Stat. Soc. Ser. B,1977

5. Theoretical guarantees for approximate sampling from smooth and log-concave densities;Dalalyan;J. Roy. Stat. Soc. B,2017

Cited by 55 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3