Evidence for a vestigial nematic state in the cuprate pseudogap phase

Author:

Mukhopadhyay Sourin,Sharma Rahul,Kim Chung Koo,Edkins Stephen D.,Hamidian Mohammad H.,Eisaki Hiroshi,Uchida Shin-ichi,Kim Eun-Ah,Lawler Michael J.,Mackenzie Andrew P.,Davis J. C. Séamus,Fujita Kazuhiro

Abstract

The CuO2 antiferromagnetic insulator is transformed by hole-doping into an exotic quantum fluid usually referred to as the pseudogap (PG) phase. Its defining characteristic is a strong suppression of the electronic density-of-states D(E) for energies |E| < Δ*, where Δ* is the PG energy. Unanticipated broken-symmetry phases have been detected by a wide variety of techniques in the PG regime, most significantly a finite-Q density-wave (DW) state and a Q = 0 nematic (NE) state. Sublattice-phase-resolved imaging of electronic structure allows the doping and energy dependence of these distinct broken-symmetry states to be visualized simultaneously. Using this approach, we show that even though their reported ordering temperatures TDW and TNE are unrelated to each other, both the DW and NE states always exhibit their maximum spectral intensity at the same energy, and using independent measurements that this is the PG energy Δ*. Moreover, no new energy-gap opening coincides with the appearance of the DW state (which should theoretically open an energy gap on the Fermi surface), while the observed PG opening coincides with the appearance of the NE state (which should theoretically be incapable of opening a Fermi-surface gap). We demonstrate how this perplexing phenomenology of thermal transitions and energy-gap opening at the breaking of two highly distinct symmetries may be understood as the natural consequence of a vestigial nematic state within the pseudogap phase of Bi2Sr2CaCu2O8.

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Computational demonstrations of density wave of Cooper pairs and paired-electron liquid in the quarter-filled band—A brief review;Chaos: An Interdisciplinary Journal of Nonlinear Science;2024-07-01

2. Classification of electronic nematicity in three-dimensional crystals and quasicrystals;Physical Review B;2024-06-25

3. Discovery of orbital ordering in Bi2Sr2CaCu2O8+x;Nature Materials;2024-03-04

4. Recent progress in NMR studies on unconventional superconductors;SCIENTIA SINICA Physica, Mechanica & Astronomica;2023-12-01

5. Charge Correlations in Cuprate Superconductors;Annual Review of Condensed Matter Physics;2023-11-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3