Low energy cost for optimal speed and control of membrane fusion

Author:

François-Martin Claire,Rothman James E.,Pincet Frederic

Abstract

Membrane fusion is the cell’s delivery process, enabling its many compartments to receive cargo and machinery for cell growth and intercellular communication. The overall activation energy of the process must be large enough to prevent frequent and nonspecific spontaneous fusion events, yet must be low enough to allow it to be overcome upon demand by specific fusion proteins [such as soluble N-ethylmaleimide–sensitive factor attachment protein receptors (SNAREs)]. Remarkably, to the best of our knowledge, the activation energy for spontaneous bilayer fusion has never been measured. Multiple models have been developed and refined to estimate the overall activation energy and its component parts, and they span a very broad range from 20 kBT to 150 kBT, depending on the assumptions. In this study, using a bulk lipid-mixing assay at various temperatures, we report that the activation energy of complete membrane fusion is at the lowest range of these theoretical values. Typical lipid vesicles were found to slowly and spontaneously fully fuse with activation energies of ∼30 kBT. Our data demonstrate that the merging of membranes is not nearly as energy consuming as anticipated by many models and is ideally positioned to minimize spontaneous fusion while enabling rapid, SNARE-dependent fusion upon demand.

Funder

Agence Nationale de la Recherche

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 69 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3