Streptococcus pneumoniaecapsular polysaccharide is linked to peptidoglycan via a direct glycosidic bond to β-D-N-acetylglucosamine

Author:

Larson Thomas R.,Yother JanetORCID

Abstract

For many bacteria, including those important in pathogenesis, expression of a surface-localized capsular polysaccharide (CPS) can be critical for survival in host environments. In Gram-positive bacteria, CPS linkage is to either the cytoplasmic membrane or the cell wall. Despite the frequent occurrence and essentiality of these polymers, the exact nature of the cell wall linkage has not been described in any bacterial species. Using theStreptococcus pneumoniaeserotype 2 CPS, which is synthesized by the widespread Wzy mechanism, we found that linkage occurs via the reducing end glucose of CPS and the β-D-N-acetylglucosamine (GlcNAc) residues of peptidoglycan (PG). Hydrofluoric acid resistance,31P-NMR, and32P labeling demonstrated the lack of phosphodiester bonds, which typically occur in PG–polysaccharide linkages. Component sugar analysis of purified CPS–PG identified only CPS and PG sugars in the appropriate ratios, suggesting the absence of an oligosaccharide linker. Time of flight mass spectrometry confirmed a direct glycosidic linkage between CPS and PG and showed that a single CPS repeat unit can be transferred to PG. The linkage was acetolysis susceptible, indicative of a 1,6 glycosidic bond between CPS and the GlcNAc C-6. The acetylation state of GlcNAc did not affect linkage. A direct glycosidic linkage to PG was also demonstrated for serotypes 8 and 31, whose reducing end sugars are glucose and galactose, respectively. These results provide the most detailed descriptions of CPS–PG linkages for any microorganism. Identification of the linkage is a first step toward identifying the linking enzyme and potential inhibitors of its activity.

Funder

HHS | National Institutes of Health

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3