Abstract
Electric charges are conserved. The same would be expected to hold for magnetic charges, yet magnetic monopoles have never been observed. It is therefore surprising that the laws of nonequilibrium thermodynamics, combined with Maxwell’s equations, suggest that colloidal particles heated or cooled in certain polar or paramagnetic solvents may behave as if they carry an electric/magnetic charge. Here, we present numerical simulations that show that the field distribution around a pair of such heated/cooled colloidal particles agrees quantitatively with the theoretical predictions for a pair of oppositely charged electric or magnetic monopoles. However, in other respects, the nonequilibrium colloidal particles do not behave as monopoles: They cannot be moved by a homogeneous applied field. The numerical evidence for the monopole-like fields around heated/cooled colloidal particles is crucial because the experimental and numerical determination of forces between such colloidal particles would be complicated by the presence of other effects, such as thermophoresis.
Funder
Seventh Framework Programme
Austrian Academy of Sciences
Austrian Science Fund
Publisher
Proceedings of the National Academy of Sciences
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献