Block–spiral magnetism: An exotic type of frustrated order

Author:

Herbrych J.ORCID,Heverhagen J.,Alvarez G.,Daghofer M.,Moreo A.ORCID,Dagotto E.

Abstract

Competing interactions in quantum materials induce exotic states of matter such as frustrated magnets, an extensive field of research from both the theoretical and experimental perspectives. Here, we show that competing energy scales present in the low-dimensional orbital-selective Mott phase (OSMP) induce an exotic magnetic order, never reported before. Earlier neutron-scattering experiments on iron-based 123 ladder materials, where OSMP is relevant, already confirmed our previous theoretical prediction of block magnetism (magnetic order of the form). Now we argue that another phase can be stabilized in multiorbital Hubbard models, the block–spiral state. In this state, the magnetic islands form a spiral propagating through the chain but with the blocks maintaining their identity, namely rigidly rotating. The block–spiral state is stabilized without any apparent frustration, the common avenue to generate spiral arrangements in multiferroics. By examining the behavior of the electronic degrees of freedom, parity-breaking quasiparticles are revealed. Finally, a simple phenomenological model that accurately captures the macroscopic spin spiral arrangement is also introduced, and fingerprints for the neutron-scattering experimental detection are provided.

Funder

U.S. Department of Energy

DOE | SC | Basic Energy Sciences

DOE | SC | Advanced Scientific Computing Research

Deutsche Forschungsgemeinschaft

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3