Abstract
The Ritz upper bound to eigenvalues of Hermitian operators is essential for many applications in science. It is a staple of quantum chemistry and physics computations. The lower bound devised by Temple in 1928 [G. Temple,Proc. R. Soc. A Math. Phys. Eng. Sci.119, 276–293 (1928)] is not, since it converges too slowly. The need for a good lower-bound theorem and algorithm cannot be overstated, since an upper bound alone is not sufficient for determining differences between eigenvalues such as tunneling splittings and spectral features. In this paper, after 90 y, we derive a generalization and improvement of Temple’s lower bound. Numerical examples based on implementation of the Lanczos tridiagonalization are provided for nontrivial lattice model Hamiltonians, exemplifying convergence over a range of 13 orders of magnitude. This lower bound is typically at least one order of magnitude better than Temple’s result. Its rate of convergence is comparable to that of the Ritz upper bound. It is not limited to ground states. These results complement Ritz’s upper bound and may turn the computation of lower bounds into a staple of eigenvalue and spectral problems in physics and chemistry.
Publisher
Proceedings of the National Academy of Sciences
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献