Molecular insights into the genome dynamics and interactions between core and acquired genomes ofVibrio cholerae

Author:

Pant Archana,Bag Satyabrata,Saha Bipasa,Verma Jyoti,Kumar Pawan,Banerjee SayantanORCID,Kumar Bhoj,Kumar YashwantORCID,Desigamani Anbumani,Maiti Suhrid,Maiti Tushar K.ORCID,Banerjee Sanjay K.ORCID,Bhadra Rupak K.,Koley Hemanta,Dutta Shanta,Nair G. Balakrish,Ramamurthy Thandavarayan,Das BhabatoshORCID

Abstract

Bacterial species are hosts to horizontally acquired mobile genetic elements (MGEs), which encode virulence, toxin, antimicrobial resistance, and other metabolic functions. The bipartite genome ofVibrio choleraeharbors sporadic and conserved MGEs that contribute in the disease development and survival of the pathogens. For a comprehensive understanding of dynamics of MGEs in the bacterial genome, we engineered the genome ofV. choleraeand examined in vitro and in vivo stability of genomic islands (GIs), integrative conjugative elements (ICEs), and prophages. Recombinant vectors carrying the integration module of these GIs, ICE and CTXΦ, helped us to understand the efficiency of integrations of MGEs in theV. choleraechromosome. We have deleted more than 250 acquired genes from 6 different loci in theV. choleraechromosome and showed contribution of CTX prophage in the essentiality of SOS response master regulator LexA, which is otherwise not essential for viability in other bacteria, includingEscherichia coli. In addition, we observed that the core genome-encoded RecA helps CTXΦ to bypassV. choleraeimmunity and allow it to replicate in the host bacterium in the presence of similar prophage in the chromosome. Finally, our proteomics analysis reveals the importance of MGEs in modulating the levels of cellular proteome. This study engineered the genome ofV. choleraeto remove all of the GIs, ICEs, and prophages and revealed important interactions between core and acquired genomes.

Funder

Department of Biotechnology , Ministry of Science and Technology

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3