Abstract
The corticospinal tract is unique to mammals and the corpus callosum is unique to placental mammals (eutherians). The emergence of these structures is thought to underpin the evolutionary acquisition of complex motor and cognitive skills. Corticospinal motor neurons (CSMN) and callosal projection neurons (CPN) are the archetypal projection neurons of the corticospinal tract and corpus callosum, respectively. Although a number of conserved transcriptional regulators of CSMN and CPN development have been identified in vertebrates, none are unique to mammals and most are coexpressed across multiple projection neuron subtypes. Here, we discover 17 CSMN-enriched microRNAs (miRNAs), 15 of which map to a single genomic cluster that is exclusive to eutherians. One of these, miR-409-3p, promotes CSMN subtype identity in part via repression of LMO4, a key transcriptional regulator of CPN development. In vivo, miR-409-3p is sufficient to convert deep-layer CPN into CSMN. This is a demonstration of an evolutionarily acquired miRNA in eutherians that refines cortical projection neuron subtype development. Our findings implicate miRNAs in the eutherians’ increase in neuronal subtype and projection diversity, the anatomic underpinnings of their complex behavior.
Funder
HHS | NIH | National Institute of Neurological Disorders and Stroke
AOSpine North America
Stanford McCormick Faculty Award
Stanford Maternal and Child Health Research Institute
HHS | NIH | NIH Office of the Director
Amyotrophic Lateral Sclerosis Association
Travis Roy Foundation
HHS | NIH | National Institute of Allergy and Infectious Diseases
HHS | NIH | National Institute of Mental Health
Publisher
Proceedings of the National Academy of Sciences
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献