TheαβTCR mechanosensor exploits dynamic ectodomain allostery to optimize its ligand recognition site

Author:

Hwang WonmukORCID,Mallis Robert J.ORCID,Lang Matthew J.ORCID,Reinherz Ellis L.ORCID

Abstract

EachαβT cell receptor (TCR) functions as a mechanosensor. The TCR is comprised of a clonotypic TCRαβligand-binding heterodimer and the noncovalently associated CD3 signaling subunits. When bound by ligand, an antigenic peptide arrayed by a major histocompatibility complex molecule (pMHC), the TCRαβhas a longer bond lifetime under piconewton-level loads. The atomistic mechanism of this “catch bond” behavior is unknown. Here, we perform molecular dynamics simulation of a TCRαβ-pMHC complex and its variants under physiologic loads to identify this mechanism and any attendant TCRαβdomain allostery. The TCRαβ-pMHC interface is dynamically maintained by contacts with a spectrum of occupancies, introducing a level of control via relative motion between Vα and Vβ variable domains containing the pMHC-binding complementarity-determining region (CDR) loops. Without adequate load, the interfacial contacts are unstable, whereas applying sufficient load suppresses Vα-Vβ motion, stabilizing the interface. A second level of control is exerted by Cα and Cβ constant domains, especially Cβ and its protruding FG-loop, that create mismatching interfaces among the four TCRαβdomains and with a pMHC ligand. Applied load enhances fit through deformation of the TCRαβmolecule. Thus, the catch bond involves the entire TCRαβconformation, interdomain motion, and interfacial contact dynamics, collectively. This multilayered architecture of the machinery fosters fine-tuning of cellular response to load and pMHC recognition. Since the germline-derived TCRαβectodomain is structurally conserved, the proposed mechanism can be universally adopted to operate under load during immune surveillance by diverseαβTCRs constituting the T cell repertoire.

Funder

HHS | NIH | National Institute of Allergy and Infectious Diseases

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3