Novel parasite invasion leads to rapid demographic compensation and recovery in an experimental population of guppies

Author:

Rogowski Emma L.B.ORCID,Van Alst Andy D.,Travis JosephORCID,Reznick David N.,Coulson TimORCID,Bassar Ronald D.

Abstract

The global movement of pathogens is altering populations and communities through a variety of direct and indirect ecological pathways. The direct effect of a pathogen on a host is reduced survival, which can lead to decreased population densities. However, theory also suggests that increased mortality can lead to no change or even increases in the density of the host. This paradoxical result can occur in a regulated population when the pathogen’s negative effect on survival is countered by increased reproduction at the lower density. Here, we analyze data from a long-term capture–mark–recapture experiment of Trinidadian guppies (Poecilia reticulata) that were recently infected with a nematode parasite (Camallanus cotti). By comparing the newly infected population with a control population that was not infected, we show that decreases in the density of the infected guppy population were transient. The guppy population compensated for the decreased survival by a density-dependent increase in recruitment of new individuals into the population, without any change in the underlying recruitment function. Increased recruitment was related to an increase in the somatic growth of uninfected fish. Twenty months into the new invasion, the population had fully recovered to preinvasion densities even though the prevalence of infection of fish in the population remained high (72%). These results show that density-mediated indirect effects of novel parasites can be positive, not negative, which makes it difficult to extrapolate to how pathogens will affect species interactions in communities. We discuss possible hypotheses for the rapid recovery.

Funder

NSF | BIO | Division of Environmental Biology

RCUK | Natural Environment Research Council

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3