Abstract
Bioelectronic scaffolds that support devices while promoting tissue integration could enable tissue hybrids with augmented electronic capabilities. Here, we demonstrate a photo–cross-linkable silk fibroin (PSF) derivative and investigate its structural, electrical, and chemical properties. Lithographically defined PSF films offered tunable thickness and <1-µm spatial resolution and could be released from a relief layer yielding freestanding scaffolds with centimeter-scale uniformity. These constructs were electrically insulating; multielectrode arrays with PSF-passivated interconnects provided stable electrophysiological readouts from HL-1 cardiac model cells, brain slices, and hearts. Compared to SU8, a ubiquitous biomaterial, PSF exhibited superior affinity toward neurons which we attribute to its favorable surface charge and enhanced attachment of poly-d-lysine adhesion factors. This finding is of significant importance in bioelectronics, where tight junctions between devices and cell membranes are necessary for electronic communication. Collectively, our findings are generalizable to a variety of geometries, devices, and tissues, establishing PSF as a promising bioelectronic platform.
Funder
Tufts University
Foundation for the National Institutes of Health
National Natural Science Foundation of China
Publisher
Proceedings of the National Academy of Sciences
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献